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Brief Summary of Accomplished Results:

Research Report:

Aims (provided by PI):

Agricultural work carries inherent injury risks due to hazardous equipment, physically demanding
conditions, and exposure to environmental hazards. The primary aim of this project is to improve
agricultural safety by building a predictive framework that can assess the severity of injuries and identify
actionable preventive strategies. To achieve this, we leverage advanced machine learning (ML) models
and Explainable Artificial Intelligence (XAl) tools. These approaches enable both predictive accuracy and
transparent insights into the factors most associated with severe injuries in agricultural settings. The
project is structured around the following specific aims:

Aim 1: Data Collection and Dataset Preparation. Develop a comprehensive dataset of agricultural injury
cases by sourcing and curating incident-level data from AglnjuryNews.com, a publicly available platform
aggregating media-reported injuries and fatalities across the United States.

Aim 2: Machine Learning (ML) Model Development and Comparison. Train and evaluate a variety of ML
models, including Random Forest, AdaBoost, Gradient Boosting, and XGBoost, to classify injury severity.
Performance will be measured using accuracy, precision, recall, and AUC-ROC to identify the most
effective model(s).

Aim 3: Explainable Al (XAl) for Model Interpretability. Apply SHAP (SHapley Additive exPlanations) to
interpret model outputs and identify the most influential factors in injury severity prediction. This
interpretability enables stakeholders to make informed decisions based on model results. By enabling
stakeholders to understand which factors contribute most to injury risk, this aim builds trust and supports
data-driven decision-making, allowing model insights to be effectively translated into safety measures.

Data:
The dataset used in this study was obtained from AglnjuryNews.com, an open-access surveillance
platform that aggregates news media reports of agricultural injuries and fatalities occurring across the



United States and Canada. Covering a time span from 2015 to 2024, AglnjuryNews collects incident-level
data that includes a wide range of variables such as geographic location, demographic information,
accident characteristics, and the presence or absence of safety equipment at the time of the incident.
These records are identified through automated keyword filtering and digital media monitoring, after
which expert volunteers manually review and code the information into a structured format.

To prepare the data for analysis, the raw dataset underwent extensive preprocessing, including
removal duplicates, outliers and records with missing values. The resulting dataset comprised 2,472 valid
records of agricultural injury incidents. Of these, 791 cases (32%) were classified as non-fatal, and 1,681
cases (68%) were identified as fatal. The binary target variable in this study, injury severity, was coded as
0 for fatal incidents (in which at least one person died) and 1 for non-fatal incidents (which included cases
involving minor injuries or property damage only).

The modeling framework employed in this study utilized a comprehensive set of features that were
grouped into four major categories: temporal attributes, personal characteristics, accident attributes, and
roadway/environmental factors. These explanatory variables are summarized in Table 1 and include both
categorical and continuous types, carefully selected based on their relevance to injury risk and severity.
Temporal attributes included the season of occurrence (spring, summer, autumn, or winter), whether the
incident occurred on a weekday or weekend, the time of day (morning, afternoon, evening, or night), and
the calendar month. These variables allowed for the exploration of patterns related to seasonal work,
time-of-day effects, and potential influences of agricultural cycles.

Personal characteristics comprise the victim’s gender, age, alcohol consumption, and the use of safety
equipment such as seatbelts, helmets, and other personal protective equipment (PPE). Additional binary
indicators like drowning and the presence of rollover protective structures (ROPS) were also included.
These factors provide insight into the role of human behavior and safety compliance in injury outcomes.
Accident attributes captured information about the injury agent involved in the incident—categorized
into types such as machinery, livestock, ATVs, or environmental hazards—as well as the total number of
victims, the individual’s role (e.g., operator, bystander, passenger), and whether the incident was
intentional. Geographic state was included to account for potential regional variations in practices or
regulations.

Environmental and roadway features were also incorporated, including whether the incident occurred
in a confined space, whether grain was involved, and whether the location was part of an agri-tourism
activity. These variables reflect the physical context of the incident and its potential contribution to
severity. The outcome variable, injury severity, was binarized for supervised machine learning
classification.

Table 1. Details of all variables in the dataset

Variables Variable Features Type Description/Labeling
Category
Independent  Temporal  Season Categorical 1: Spring (Mar-May); 2: Summer (Jun-Aug); 3:
Variables Attributes Autumn (Sep-Nov); 4: Winter (Dec-Feb)
Day Binomial 0: Weekday (Monday to Friday); 1: Weekend
(Saturday and Sunday)
Time Categorical 1: Morning (6am — 12pm); 2: Afternoon (12pm

—6pm); 3: Evening (6pm — 12am); 4: Night
(12am — 6am)



Month Categorical [1,12]

Personal Gender Binomial 0: Male; 1: Female
Features
Age Continuous [0, 98]
Alcohol Binomial 0: No; 1: Yes
Seatbelt Binomial 0: No; 1: Yes
Helmet Binomial 0: No; 1: Yes
Drowning Binomial 0: No; 1: Yes
ROPS Binomial 0: No; 1: Yes
Other PPE Binomial 0:No; 1: Yes
Accident Injury Agent Categorical 1: ATV/Off-Road Vehicle; 2: Building;

3: Environment; 4: Fall; 5: Fishing/Forestry; 6:
Livestock; 7: Machinery; 8: Pesticides/Plants;

9: Vehicle

Number of Victims Continuous [1,17]

Location Categorical 1: Roadways; 2: Agricultural Env.; 3: Forestry; 4:
Fishing

Role Categorical 0: Bystander; 1: Certified First Responder; 2:

Operator; 3: Other; 4: Passenger; 5:
Worker/Farmer/Fisher

Intentional Binomial 0:No; 1: Yes
State Categorical [0, 49]
Roadway Confined Space Binomial 0: No; 1: Yes
Grain Involved Binomial 0: No; 1: Yes
Agri-tourism Binomial 0: No; 1: Yes
\?:Esgldeent Injury Severity Binomial 0: Fatal; 1: Non-Fatal

Table 2 provides the frequency and percentage distribution of injury severity categories (non-fatal
and fatal) across different years from 2016 to 2024, highlighting a consistent pattern in the predominance
of fatal injuries and a gradual decline in overall incidents over time. Out of a total of 2,472 incidents, 791
(32%) were classified as non-fatal injuries and 1,681 (68%) as fatal injuries. Fatal injuries represented the
majority each year, with the highest recorded in 2018 —260 fatal cases, accounting for 69% of that year’s
total. Starting in 2019, both fatal and non-fatal injuries began to decrease, with a notable increase in the
proportion of non-fatal injuries in 2020, reaching 34% despite a drop in overall incidents. This upward shift
in non-fatal cases continued modestly through 2023, where non-fatal injuries accounted for 36% of that
year’s incidents, the highest proportion across the dataset. By 2024, there is a sharp drop in total reported
cases, with only 12 non-fatal (32%) and 25 fatal (68%) injuries recorded, suggesting either an actual decline
in incidents or partial data collection for the year. Overall, the data indicates a long-term trend toward
reduced injury frequency and a slight improvement in non-fatal outcomes in recent years.



Table 2. Frequency and percentage distribution of injury severity categories over the years.

Year Injury Severity Category Frequency Percent (%)
2016 Non-Fatal 109 32%
Fatal 234 68%
2017 Non-Fatal 111 34%
Fatal 220 66%
2018 Non-Fatal 117 31%
Fatal 260 69%
2019 Non-Fatal 100 29%
Fatal 242 71%
2020 Non-Fatal 106 34%
Fatal 204 66%
2021 Non-Fatal 75 31%
Fatal 170 69%
2022 Non-Fatal 79 30%
Fatal 181 70%
2023 Non-Fatal 82 36%
Fatal 145 64%
2024 Non-Fatal 12 32%
Fatal 25 68%

Collectively, the dataset represents a rich and multidimensional resource for modeling injury severity
in agriculture. The diversity of variables allows for the application of advanced machine learning models
that not only provide accurate predictions but also support explainability through methods like SHAP. The
combination of structured incident-level data and contextual factors offers a unique opportunity to
generate actionable insights for policymakers, safety professionals, and researchers in agricultural health
and safety.

Al/ML Approach:

Machine learning techniques, particularly ensemble methods, have gained significant traction in
predictive modeling due to their ability to enhance accuracy, handle complex datasets, and reduce model
variance and bias. This section outlines several widely used ensemble algorithms—ranging from boosting-
based approaches to bagging methods, highlighting their mechanisms and advantages in classification
task relevant to predictive analytics.

Adaptive Boosting (AdaBoost):

AdaBoost is one of the earliest and most influential boosting ensemble methods. It operates on the
principle that a strong classifier can be created by sequentially combining multiple weak classifiers, each
refining the accuracy of the overall prediction. The algorithm adjusts the weights of training samples at
every iteration, giving more focus to misclassified instances. This leads to an iterative refinement process
that continues until a certain classification error threshold is reached, helping to reduce bias in complex
prediction scenarios. Unlike some ensemble techniques, AdaBoost is relatively robust to both overfitting
and underfitting in various classification tasks. It improves model performance by dynamically updating



the sample distribution and selecting only the most effective classifiers, discarding weaker ones. This
approach results in a cumulative increase in predictive accuracy and has proven useful in areas such as
accident severity prediction.

Extreme Gradient Boosting (XGBoost):

XGBoost is an advanced ensemble learning algorithm built on decision trees and designed for efficiency
and flexibility in supervised learning tasks. It implements a refined form of gradient boosting, where
multiple weak learners are combined iteratively into a single, powerful model. Each iteration focuses on
correcting the errors of the previous learner, using gradient-based optimization guided by an objective
function. The algorithm includes regularization to control overfitting and improve generalization, and it
supports feature importance ranking, which is useful in high-dimensional datasets. XGBoost also employs
random sampling to reduce variance and uses both first- and second-order derivatives of the loss function
for precise gradient calculations. It supports parallel and distributed computing, enabling faster training
times and scalability to large datasets. XGBoost has been applied effectively in various domains, including
injury severity and accident analysis.

Light gradient boosting machine (LightGBM):

LightGBM is a highly efficient implementation of gradient boosting decision trees designed to overcome
common issues such as high computational cost and long training times. It is suitable for both classification
and regression and introduces innovative techniques like Exclusive Feature Bundling (EFB) and Gradient-
based One-Side Sampling (GOSS) to improve scalability and performance. LightGBM uses a histogram-
based learning algorithm and a leaf-wise tree growth strategy with depth constraints, which boosts
accuracy while reducing the risk of overfitting. It also natively supports categorical features, eliminating
the need for one-hot encoding. LightGBM’s design makes it ideal for large datasets and complex
prediction tasks, including real-world applications like road traffic injury analysis.

Histogram gradient boosting (HistGBRT):

HistGBRT is a variant of gradient boosting that focuses on improving training speed and memory
efficiency. It follows the standard boosting framework by iteratively training weak learners to correct the
mistakes of their predecessors. A key distinction of HistGBRT is its use of histogram-based techniques,
where continuous features are discretized into bins, significantly accelerating computation. This method
reduces training time and memory usage by storing values in histograms instead of processing continuous
data directly. HistGBRT offers a practical balance of accuracy and efficiency, especially for large-scale
datasets.

Random Forest (RF):

Random Forest is a popular ensemble learning technique that aggregates the output of multiple decision
trees to improve predictive performance. It is effective for both regression and classification, especially in
high-dimensional data environments. By building each tree using a random subset of features and data
samples, Random Forest minimizes overfitting and ensures robustness to noise and outliers. The
algorithm also provides useful metrics like feature importance, helping to interpret the model’s decisions.
Its scalability and versatility have made it a valuable tool in numerous domains, including crash severity
prediction.

Gradient Boosting (GB):

Gradient Boosting is an ensemble method that builds models sequentially, where each new model
corrects the residual errors of the previous one. It uses gradient descent to minimize a specified loss
function, making it highly effective in improving predictive accuracy. The approach allows models to focus
on the most challenging data points and incorporates regularization techniques—such as limiting tree




depth and using a learning rate—to reduce overfitting and enhance model generalization. Gradient
Boosting has demonstrated strong performance on complex, non-linear datasets, often outperforming
traditional models like linear regression and standalone decision trees in both classification and regression
tasks.

Experimental methods, validation approach:

Figure 1 shows a comprehensive workflow diagram for ML agricultural injury severity prediction. Initial
step involves obtaining and preparing data from AglnjuryNews. After applying the preprocessing,
organized data are split into training and test dataset, where the chosen ML models are trained using the
training dataset, and test dataset are employed to observe the behavior of the trained ML models. Since
our dataset contains many more samples than features, we were careful not to reduce the number of
features too much to avoid losing important information. This strategy helps us balance capturing a wide
range of influencing factors and maintaining the robustness of our model. The min-max method
(MinMaxScaler) was applied to standardize the features to eliminate potential model bias due to
difference in scales and units. The min-max method transforms the data into a range 0 and 1 and ensures
that all features contribute equally to the model by bringing them to a common scale, which helps improve
the performance of machine learning algorithms.

Dataset Preparation |

Time Day Season Location G el Agritourism Alcchol ROPS
Space Involved
Data from
AgInjuryNews Additional
Intentional Injury Agent Drowning Gender Age Role Seatbelt Helmet PPE

Machine Learning (ML) Based Injury Severity Prediction l

Training and testing of
developed models
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Figure 1. Workflow diagram for all scenarios in agricultural injury severity prediction.

Model Evaluation:

When comparing classification models, various performance metrics derived from a confusion matrix are
commonly used. Table 3 presents the confusion matrix for a binary classifier. This matrix, structured as a
contingency table, illustrates how observations are distributed across actual and predicted classes. In
classification problems, the confusion matrix comprises four possible outcomes: true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN), as shown in Table 3. It provides a clear



representation of both correct and incorrect classifications under a specified target, allowing for the
calculation of accuracy and other performance metrics.

Table 3. Confusion Matrix for Binary Classification
Predicted Class

Actual Class Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

In this study, the binary confusion matrix for each machine learning model was utilized to compute
various quantitative performance metrics. The metrics used for evaluating model performance are
outlined and explained below. Accuracy, expressed by Equation 1, represents the proportion of correctly
classified samples out of the total number of samples. Precision (equation 2) assesses the alignment
between data labels and the positive labels predicted by the classifier. Recall, or sensitivity (equation 3),
indicates how effectively the classifier identifies positive labels. Finally, the F1-score (equation 4) is the
harmonic mean of recall and precision, providing a balanced measure of the that considers both false
positives and false negatives in a classification model.

p _ TP + TN Eq. 1
Couracy = TP {FP+ FN+ TN

TP Eq.2

Precisi __

recision TP L FP
TP Eq.3

Recall = TP+—FN

Precision - Recall Eq. 4

F1 — Score = 2

. Precision + Recall

Explainability Analysis with SHAP:

As machine learning models become increasingly complex and accurate, the need for interpretability is
more critical than ever, especially in safety-critical areas like traffic accident prediction. Among the various
explainable Al (XAl) techniques, SHAP (SHapley Additive exPlanations) has become a leading method for
interpreting model predictions. Based on principles from cooperative game theory, SHAP assigns each
input feature a contribution value toward a model’s output using Shapley values. It offers a consistent,
model-agnostic approach that can explain predictions from any machine learning model, including
complex ensemble and deep learning systems.

One of SHAP's key strengths lies in its ability to quantify both the size and direction of a feature’s
impact on an individual prediction. This dual capability supports both global and local interpretability.
Globally, SHAP generates summary plots that rank features by their overall importance across the entire
dataset, helping analysts identify the most influential variables. Locally, SHAP provides visualizations—
such as force plots and decision plots—that show how specific feature values contributed to an individual
prediction relative to a baseline, offering insights into why a particular outcome was predicted.

SHAP is especially valuable when applied to high-performing ensemble models like XGBoost,
LightGBM, and AdaBoost, which often sacrifice transparency for predictive power. By uncovering non-
linear interactions, revealing hidden dependencies, and highlighting threshold effects, SHAP enhances the



interpretability of these models. This makes it particularly effective for analyzing agricultural injury
severity, where the relationships among driver behavior, vehicle characteristics, environmental
conditions, and road factors are often complex.

In this study, SHAP is used to assess feature importance and interaction effects within ensemble
models designed to predict agricultural injury severity. It provides both broad policy-level insights—such
as identifying key safety factors—and detailed, case-level explanations to support operational decision-
making. This layered interpretability bridges the gap between prediction accuracy and practical
application, offering valuable insights to first responders, transportation planners, and policymakers. By
enabling a deeper understanding at both population-wide and individual crash levels, SHAP enhances the
diagnostic and prescriptive utility of machine learning models.

Results:

Figure 2 presents the annual distribution of injury severity categories—fatal and non-fatal—between 2016
and 2024. The data reveal that fatal injuries consistently outnumber non-fatal ones across all observed
years. The frequency of incidents peaked in 2018, with fatal cases reaching their highest recorded level
during that year. Starting in 2019, there is a noticeable decline in both fatal and non-fatal injuries. Notably,
in 2020, the proportion of non-fatal injuries increased to 33% of that year's total incidents, despite an
overall decrease in reported cases. This trend of declining injury frequency continues through 2023 and
into 2024. While this downward trend may suggest improvements in safety practices or interventions, it
may also be partially attributed to reporting lags or incomplete data for more recent periods.
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Figure 2: Year-wise distribution of agricultural injuries by severity from 2016 to 2024.

Table 4 presents the confusion matrices for all machine learning (ML) methods tested in this study.
Across the models, there is a consistent trend of high correct classification rates for fatal cases compared
to non-fatal cases. For example, Random Forest (RF) achieved 1,574 correct fatal predictions versus 154
correct non-fatal predictions, while Gradient Boosting (GB) and XGBoost (XGB) displayed similar patterns.
This imbalance suggests that the models were more adept at identifying fatal injuries, likely due to the
higher representation of fatal cases in the dataset (68% of total). While LightGBM and HistGBRT exhibited



slightly higher correct non-fatal classifications than other models, these gains came at the expense of
reduced fatal classification accuracy, hinting at a trade-off between sensitivity to the minority class and
overall accuracy.

Table 4. Confusion Matrix for All ML Methods

Model Actual Class Predicted Class
Non-Fatal Fatal

GB Non-Fatal 213 565
Fatal 137 1536

XGB Non-Fatal 183 595
Fatal 120 1553

RF Non-Fatal 154 624
Fatal 99 1574

Adaboost Non-Fatal 216 562
Fatal 152 1521
LightGBM Non-Fatal 265 513
Fatal 268 1405

HistGBRT Non-Fatal 261 517
Fatal 253 1420

Table 5 summarizes the performance metrics for each ML method, highlighting their comparative
strengths. Most models achieved an accuracy of approximately 0.71, with F1-scores clustering around
0.81, indicating balanced performance between precision and recall. Random Forest and XGBoost
demonstrated the highest recall values (0.94 and 0.93, respectively), reflecting their strong ability to
detect non-fatal cases. Conversely, LightGBM recorded the lowest overall accuracy (0.68) and F1-score
(0.78), suggesting challenges in achieving balanced predictions across classes. Despite these differences,
the close metric values across most models underscore the robustness of the ensemble approaches in
predicting injury severity within this dataset.

Table 5. Performance Metrics for all Linear ML Models

Model Accuracy Precision Recall F1-Score
GB 0.71 0.73 0.92 0.81
XGB 0.71 0.72 0.93 0.81
RF 0.71 0.72 0.94 0.81

Adaboost 0.71 0.73 0.91 0.81
LightGBM 0.68 0.73 0.84 0.78
HistGBRT 0.69 0.73 0.85 0.79

Figure 3 shows the Receiver Operating Characteristic (ROC) curves for all evaluated ML models,
offering a visual comparison of their classification performance. The curves for Gradient Boosting,



XGBoost, Random Forest, and AdaBoost exhibit a high area under the curve (AUC), reflecting strong
discriminative ability between fatal and non-fatal cases. While LightGBM and HistGBRT showed slightly
lower AUC scores, their curves still indicated acceptable performance above random chance. The overall
proximity of the curves suggests that all tested models effectively leveraged the dataset’s feature space
to differentiate between severity classes, with marginal differences in predictive capacity.

Receiver Operating Characteristic Receiver Operating Characteristic
10 -
7 10 =
. .
- -,
td -
I’ ’I‘
08 P 08 P
’ rd
l’ rd
] . z e
k] #
2 06 e < 06 e
g e $ il
= s = 4
@ g 9 e
F 04 . g 0.4 e
© ” ° L,
2 )
=] L7 & e
l’ ‘/,
0.2 P 0.2 -,
e 7’
td ”
' ’l
I’ 4
.
004 #7 ROC curve (area = 0.69) 004 ¥ ROC curve (area = 0.67)
0.0 0.2 0.4 06 08 L0 00 02 04 0.6 0.8 10

False Positive Rate False Positive Rate

Receiver Operating Characteristic . . -
P 9 Receiver Operating Characteristic
10
g Lo =
d s
< d
4 4
” ’/
0.8 e 0.8 7
rd e
-, -,
e -7
% P 2 »”
© 06 Vil & 06 .
> e ¢ '
= g B il
2 S
& » § ,’4
w 04 P o 0.4 e
E e g .
” I’
f/ ’/’
0.2 . 02 -
. -,
/’ J"
’J ’,/
004 »° ROC curve (area = 0.69) 00 ¥ ROC curve (area = 0.67)
00 02 04 06 08 10 0.0 0.2 04 06 08 10
False Positive Rate False Positive Rate
Receiver Operating Characteristic
Receiver Operating Characteristic 10
g 7
10 = ,/’
I” ’I
’ 0.8 -
0.8 - ’ ’
). P e
I’ ’l
@ il 2 4
5 " e} e
& 06 { e = 0.6 .
g e 2 s
B ’ = ”,
@ - @ td
& ’/ 8 t,
g 041 - g 04 e
E e 2 s
# = ra
. -
-, -
02 g e
- 0.2 -,
7 -’
’ s
f’ l’
004 ¥ ROC curve (area = 0.69) ’I
0.0 14 ROC curve (area = 0.67)
0.0 0.2 04 0.6 08 10
False Positive Rate 0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Figure 3: The ROC curves generated from ML models for injury severity classification based on data we
used.

Figure 4 provides the global SHAP interpretation results, with the left panel ranking features by their
mean absolute SHAP values and the right panel offering a summary plot of their impact. Key features such
as the presence of rollover protective structures (ROPS), helmet use, age, and injury agent type emerged



as the most influential in determining injury severity. Positive SHAP values (shown in red) indicate a higher
likelihood of predicting a non-fatal outcome, while negative values (blue) are associated with fatal
outcomes. The summary plot reveals clear threshold and interaction effects—for instance, higher age
values generally increased fatality risk, while safety equipment presence strongly shifted predictions
toward non-fatal outcomes. These insights not only validate domain knowledge but also offer practical
targets for safety interventions in agricultural settings.
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Figure 4: Global interpretation utilizing SHAP based on features importance (upper panel) and summary
plot (lower panel).

Figure 5 presents the SHAP local interpretability plots for individual predictions generated by the
different ML models used in this study. Each plot highlights the most influential features for a specific
prediction, showing both the magnitude and direction of their impact. Features in red push the model’s
output toward predicting a non-fatal outcome, while those in blue push it toward a fatal outcome. Across
models, the state variable consistently emerges as a dominant factor, often exerting a strong negative
influence on predicted survival likelihood. Other recurring influential features include location type, role,
age, and injury agent, though their impact varies in magnitude and sign between models and individual
cases. These local explanations reveal how the same feature can have opposite effects depending on the
contextual combination of other variables, illustrating the complex interactions captured by ensemble
methods. This level of interpretability is valuable for case-specific analysis, enabling stakeholders to
understand the reasoning behind individual severity classifications and potentially tailor interventions to
specific high-risk scenarios.
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Figure 5: SHAP local interpretability plots for different ML models we use.
Ideas/Aims for Future Extramural Project:

In a future extramural project, the ultimate goal is to is to enhance agricultural safety by developing a
predictive framework that not only assesses injury severity based on diverse risk factors but also provides
actionable insights into preventive measures. By employing advanced deep learning (DL) techniques and
Explainable Al (XAl), this project will deliver a comprehensive analysis of the key risk factors contributing
to injuries in agricultural settings. These insights will guide safety protocols and targeted interventions,
ultimately working towards a safer agricultural work environment. This approach is particularly vital in an
industry where data availability and interpretability can greatly influence the adoption of safety measures.
The results from this IIAl pilot project can be extended in developing the above-mentioned approaches.
The following specific aims shall be addressed: 1) comparative Study in Agricultural Safety Using Advanced
DL Models; 2) Integration of Explainable Al for Interpretability and Stakeholder Engagement; 3) Practical
Application for Data-Driven Safety Interventions in Agriculture.

Publications Resulting from Project:

O. Mermer, Y. Liu, |. Demir, “Predicting agricultural injury severity using ensemble machine learning:
global versus local explainability using SHAP”, International Journal of Injury Control and Safety
Promotion, 2025 (in preparation)



