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Brief summary of accomplished results:

Research report:

Aims (provided by PI):

Specific Aims: About 430 million people across the globe suffer from disabling hearing loss that requires
audiological services. It is estimated that over 10% of the global population (>700 million) will have
disabling hearing loss by 2050'. Tinnitus, the phantom perception of sound without an external sound
source, is a prevalent hearing condition that often accompanies acquired hearing loss. Almost 15% of the
world’s population experience some form of tinnitus, and about 20% of them struggle with debilitating
tinnitus?. People with hearing loss and tinnitus often experience communication difficulties, social
isolation, cognitive impairment, depression, and insomnia. Aging, hearing loss, noise exposure, and
ototoxic agents are known risk factors for hearing loss and tinnitus®. There is no cure for acquired hearing
loss and tinnitus. There is a pressing need to identify molecular mechanisms underlying tinnitus and
hearing loss for developing novel prophylactics and therapeutics.

Heritability studies estimated ~40-70% variability in acquired hearing loss and tinnitus could be attributed
to genetic variability*. Recent studies showed that the polygenic risk scores (PRS) derived from standard
genome-wide association studies (GWAS) could account for only about 5% of the variability in these
phenotypes>S. The standard statistical methods employed by large-scale GWAS are largely inefficient at
interrogating the influence of rare variants, gene-gene, and gene-environment interactions, collectively
reducing the predictive utility of genomics and hindering the enormous potential applications of genomics
in clinical audiology, otolaryngology, and other relevant biomedical areas’. The emergence of Artificial
Intelligence (AI) in medicine has led to significant advances toward implementing personalized medicine.
Due to its exceptional performance when utilizing complex big data, novel Al techniques represent
significant potential for revolutionizing genomics in clinical research and practice®.

This project will utilize new Al-powered algorithms and analytical techniques to shed light on the
underlying association between genetics, environment, and hearing phenotypes (hearing loss and



tinnitus). Our central hypothesis is that Al-powered methods could significantly improve prediction of
tinnitus and hearing loss compared to standard PRS. In this preliminary study, we plan to test the
central hypothesis using the UK Biobank database (Total N>500,000, NTinnitus = 77605, NHearing Loss
= 151677). Here we choose to limit our analysis to chromosome 4 because creating a deep-learning model
for the entire genome is not computationally feasible (included in NIDCD/NIH RO01), and chromosome 4
showed significant associations with hearing loss and tinnitus in past GWAS?>*®, which could allow us to
obtain a proof-of-concept. We developed a deep-learning model for chromosome 4 using the Haplotype
Reference Consortium database with high resolution whole genome sequencing data (N=30,000). It will
be used to obtain a compressed representation of the genome for the UK Biobank database. The
compressed representation will be used to conduct Al-powered GWAS, and for calculating Al-powered
PRS. In addition, we will use deep-learning models on chromosome 4 data to predict tinnitus and hearing
loss. Our short-term goal is to compare the receiver-operating curves (ROC) obtained with standard
PRS, Al-powered PRS, and deep-learning-based models for predicting tinnitus and hearing loss.

Our specific aims are as follows:

Aim 1: To investigate the efficacy of standard and Al-powered PRS for acquired hearing loss. We
will use the UK Biobank database (N>500,000) to conduct GWAS. The database includes the outcome
variable for hearing loss (NHearing Loss = 151677, categorical outcome), non-genetic predictors (e.g.,
age, sex, ethnicity, noise, and music exposures), and genetic predictors (>10 million genetic markers). We
will utilize REGENIE to conduct standard and Al-powered GWAS for chromosome 4. A deep learning
model on the UK Biobank (Training: 70%, Testing: 30%) will be developed. ROC area-under-the-curve
(AUC) will be used to compare the efficacy of standard PRS, Al-powered PRS, and deep-learning-based
models for predicting the hearing loss phenotype.

Aim 2: To investigate the efficacy of standard and Al-powered PRS for tinnitus. We will use the UK
Biobank database to conduct GWAS for tinnitus. The database includes the outcome variable of tinnitus
(NTinnitus = 77605, categorical outcome). The methods described above (Aim 1) will be used to evaluate
the efficacy of standard PRS, Al-powered PRS, and deep-learning based models for predicting the
tinnitus phenotype.We will employ an explainable Al technique, SHapley Additive exPlanaions (SHAP),
to study how predictor features in the Al models affect the outcome.

Preliminary data: We conducted a standard GWAS for tinnitus and hearing loss using the UK Biobank
database (Bhatt et al., 2022)°. We identified significant associations between tinnitus and genetic variants
in proximity to GPM6A (chromosome 4), a gene associated with neuropsychiatric conditions. Nineteen
independent loci reached suggestive significance. The study identified 27 loci associated with hearing loss
(2 loci on chromosome 4). Our studies showed that chromosome 4 is involved in hearing loss and
tinnitus.
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Timeline of updated goals:
[J Aim 1: Initial Chromosome Focus and Shift to SNP Filtering and Dimensionality Reduction

e Aim 1.1: Start by analyzing chromosome 4 to identify key SNPs associated with hearing loss and
tinnitus.

e Aim 1.2: Shift analysis from chromosome 4 to chromosome 22 due to performance challenges
and assess outcomes.

e Aim 1.3: Expand the analysis to cover all chromosomes, recognizing the increased complexity
due to the high dimensionality introduced by millions of SNPs. Apply genome-wide suggestive
significance thresholds (based on -log p-values) to filter SNPs, aiming to mitigate the curse of
dimensionality.

e Aim 1.4: Evaluate the impact of SNP filtering on model performance, noting any incremental
improvements.

[J Aim 2: Transition to Polygenic Risk Scores and Environment Variables

e Aim 2.1: Test the effectiveness of using Polygenic Risk Scores (PRS) combined with
environmental variables as model inputs.

e Aim 2.2: Identify successful approaches where PRS + Environment variables demonstrate
improved performance.

e Aim 2.3: Test the performance of the model on a new “R21 database” of younger population

[J Aim 3: Incorporation of Phecodex Values

e Aim 3.1: Evaluate whether adding Phecodex values to the PRS + Environment variables
enhances predictive accuracy.

e Aim 3.2: Analyze the performance improvements and identify the optimal model configuration
for genetic and environmental factors.

AI/ML Approach:

Aim 1: Dimensionality Reduction and SNP Filtering
e Models Used: Two primary models for SNP analysis:
o Model 1: Transformer-based architecture, with token and position embeddings, batch
normalization, and concatenation layers, totaling approximately 8.88 million parameters.
o Model 2 (Best Model): Capsule-based model with Conv2D, PrimaryCaps, and Capsule
QKYV Attention layers, totaling approximately 7.06 million parameters.
e Performance: Model 2 achieved the best performance, yielding an AUROC of 0.636 with a
threshold of 6.5.

Aim 2: Transition to Polygenic Risk Scores and Environment Variables

For Hearing L.oss

e Models Used: PRS models combined with environmental data, tested on diverse machine
learning algorithms. (Logistic Regression, Random Forest, Naive Bayes, XB boost, and Multi-
layer Perceptron(ANN)

e Outcome: The PRS + Environmental variables model showed improved predictive accuracy over
SNP-based models.

o Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an
AUROC of 0.80




ROC Curves Comparison

10

08
-]
3 0.6
£
g

0.4

02 P —— Logistic Regression (area = 0.80)

b ~— Random Forest (area = 0.80)
o —— Artificial Neural Nets (area = 0,80)
s —— Naive Bayes (area = 0.76)
/4’ — XGBoost (area = 0.80)
v i === Chance
-
0.0 *
0.0 0.2 0.4 0.6 08 1.0
False Positive Rate
PGS000762_Cherny_SS_PRS_100325_Hearing_difficulties_Eur_J_Hum_Genet_2020(77719|0nlyUKB) o P PRSI B Ay i ¢ s
age_when_attended_assessment_centre < s 0 sat e B 4 .
PGS002104_Privé_F_PRS_869179_Hearing_difficulty_problems_Am_| Hum_Genet_2022(869179|0OnlyUKB) B ik Aas ot oaia e DT
Noise ’ - -
Sex b4

PGS001891_Privé_F_PRS_19960_Hearing_difficulty_problems_am_j_Hum_Genet_2022(19960|0nlyUKB)
Music
PGS002148_Privé_F_PRS_932197_Average_total_household_income_before_tax_Am_|_Hum_Genet_2022(932197|0OnlyUKB)
PGS001875_Privé_F_PRS_256_Rheumatoid_arthritis_Am_j_Hum_Genet_2022(256|OnlyUKB)
PGS001252 Tanigawa_Y_PRS_3731_Hearing_difficulty_and_deafness_medRxiv_2021(3376|OnlyUKB)
PGS001232_Tanigawa_Y_PRS_10055_Fluid_intelligence_score_medRxiv_2021(9384|0nlyUKB)
PGS001801_Moll_M_PRS_1232916_FEV1_FVC_ratio_Lancet_Respir_Med_2020(1232555|OnlyUKB)
PGS002068_Prive_F_PRS_831212_Diverticulosis_Am_]_Hum_Genet_2022(831212|0nlyUKB)
PGS001365_Tanigawa_Y_PRS_8504_6mm_strong_meridian_L_medRxiv_2021(7948|OnlyUKB)
Smoking_status
PGS000935_Tanigawa_Y_PRS_370_High_blood_pressure_age_at_diagnosis_medRxiv_2021(336|OnlyUKB)
PGS002593_Weissbrod_O_PRS_4677_Eosinophil_count_Nat_Genet_2022(3107|0nlyUKB)
PGS001688_Tanigawa_Y_PRS_231_WA_ISOVF_in_tract_acoustic_radiation_L_medRxiv_2021(203|OnlyUKB)
PGS001853_Privé F_PRS_19_Appendiceal_conditions_Am_| Hum_Genet_2022(19|OnlyUKB)

-++¢~0¢0’06*T%

=03 =0.2 =0.1 0.0 0.1 0.2 0.3
SHAP value (impact on medel output)

For Tinnitus

Models Used: PRS models combined with environmental data, tested on diverse machine
learning algorithms. (Logistic Regression, Random Forest, Naive Bayes, XB boost, and Multi-
layer Perceptron(ANN)

Outcome: The PRS + Environmental variables model showed improved predictive accuracy over
SNP-based models.

Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an
AUROC of 0.65
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For Hearing Difficulty in Noise

Models Used: PRS models combined with environmental data, tested on diverse machine
learning algorithms. (Logistic Regression, Random Forest, Naive Bayes, XB boost, and Multi-
layer Perceptron(ANN)

Outcome: The PRS + Environmental variables model showed improved predictive accuracy over
SNP-based models.

Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an
AUROC of 0.76
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3: Incorporation of PheCODE Values

For Hearing Loss

Models Used: PRS + Environment variables further enhanced with PheCODE values are trained
and tested on diverse machine learning algorithms. (Logistic Regression, Random Forest, Naive
Bayes, XB boost, and Multi-layer Perceptron(ANN)

Outcome: The addition of PheCODE data did not significantly increase predictive accuracy,
resulting in only a 1% gain in AUROC compared to Aim 2.

Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an
AUROC of 0.81
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For Tinnitus
Models Used: PRS + Environment variables further enhanced with PheCODE values are trained
and tested on diverse machine learning algorithms. (Logistic Regression, Random Forest, Naive

Bayes, XB boost, and Multi-layer Perceptron(ANN)
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Outcome: The addition of PheCODE data did not significantly increase predictive accuracy,

resulting in only a 1% gain in AUROC compared to Aim 2.

Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an

AUROC of 0.66
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For Hearing Difficulty in Noise

Models Used: PRS + Environment variables further enhanced with PheCODE values are trained
and tested on diverse machine learning algorithms. (Logistic Regression, Random Forest, Naive
Bayes, XB boost, and Multi-layer Perceptron(ANN)

Outcome: The addition of PheCODE data did not increase the predictive accuracy.

Best Model Metrics: More or less all the models performed similarly. Hence, reporting Multi-
layer Perceptron(ANN) yielding an AUROC of 0.76
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The present study evaluated the utility of PRS across the health spectrum for predicting hearing
difficulty, SIN deficits, and tinnitus. ANN emerged as one of the most efficient models for
predicting hearing traits while efficiently handling multidimensional genetic and non-genetic
data. We observed a wide range of PRS contributing to the prediction of ANN, which suggests
that genetic predisposition to the comorbidities can influence the susceptibility to acquiring

hearing traits.

Ideas/aims for future extramural projects:

We plan to extend this work by (1) applying modern Al methods, such as graphical pre-trained
transformers, (2) adding gene-level predictors to improve the accuracy and interpretability of the

Feature value



models, and (3) adding radiological measures that connect genes to behaviors, working as
intermediate endophenotypes. We also plan to use XAl methods for stratifying genetic risk into
biologically meaningful pathways and cell-types.



