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Brief summary of accomplished results: 
 
Research report: 
 
Aims (provided by PI): 
Specific Aims: About 430 million people across the globe suffer from disabling hearing loss that requires 
audiological services. It is estimated that over 10% of the global population (>700 million) will have 
disabling hearing loss by 20501. Tinnitus, the phantom perception of sound without an external sound 
source, is a prevalent hearing condition that often accompanies acquired hearing loss. Almost 15% of the 
world’s population experience some form of tinnitus, and about 20% of them struggle with debilitating 
tinnitus2. People with hearing loss and tinnitus often experience communication difficulties, social 
isolation, cognitive impairment, depression, and insomnia. Aging, hearing loss, noise exposure, and 
ototoxic agents are known risk factors for hearing loss and tinnitus3. There is no cure for acquired hearing 
loss and tinnitus. There is a pressing need to identify molecular mechanisms underlying tinnitus and 
hearing loss for developing novel prophylactics and therapeutics. 
Heritability studies estimated ~40-70% variability in acquired hearing loss and tinnitus could be attributed 
to genetic variability4. Recent studies showed that the polygenic risk scores (PRS) derived from standard 
genome-wide association studies (GWAS) could account for only about 5% of the variability in these 
phenotypes5,6. The standard statistical methods employed by large-scale GWAS are largely inefficient at 
interrogating the influence of rare variants, gene-gene, and gene-environment interactions, collectively 
reducing the predictive utility of genomics and hindering the enormous potential applications of genomics 
in clinical audiology, otolaryngology, and other relevant biomedical areas7. The emergence of Artificial 
Intelligence (AI) in medicine has led to significant advances toward implementing personalized medicine. 
Due to its exceptional performance when utilizing complex big data, novel AI techniques represent 
significant potential for revolutionizing genomics in clinical research and practice8. 
This project will utilize new AI-powered algorithms and analytical techniques to shed light on the 
underlying association between genetics, environment, and hearing phenotypes (hearing loss and 



tinnitus). Our central hypothesis is that AI-powered methods could significantly improve prediction of 
tinnitus and hearing loss compared to standard PRS. In this preliminary study, we plan to test the 
central hypothesis using the UK Biobank database (Total N>500,000, NTinnitus = 77605, NHearing Loss 
= 151677). Here we choose to limit our analysis to chromosome 4 because creating a deep-learning model 
for the entire genome is not computationally feasible (included in NIDCD/NIH R01), and chromosome 4 
showed significant associations with hearing loss and tinnitus in past GWAS5,6, which could allow us to 
obtain a proof-of-concept. We developed a deep-learning model for chromosome 4 using the Haplotype 
Reference Consortium database with high resolution whole genome sequencing data (N=30,000). It will 
be used to obtain a compressed representation of the genome for the UK Biobank database. The 
compressed representation will be used to conduct AI-powered GWAS, and for calculating AI-powered 
PRS. In addition, we will use deep-learning models on chromosome 4 data to predict tinnitus and hearing 
loss. Our short-term goal is to compare the receiver-operating curves (ROC) obtained with standard 
PRS, AI-powered PRS, and deep-learning-based models for predicting tinnitus and hearing loss. 
Our specific aims are as follows: 
Aim 1: To investigate the efficacy of standard and AI-powered PRS for acquired hearing loss. We 
will use the UK Biobank database (N>500,000) to conduct GWAS. The database includes the outcome 
variable for hearing loss (NHearing Loss = 151677, categorical outcome), non-genetic predictors (e.g., 
age, sex, ethnicity, noise, and music exposures), and genetic predictors (>10 million genetic markers). We 
will utilize REGENIE to conduct standard and AI-powered GWAS for chromosome 4. A deep learning 
model on the UK Biobank (Training: 70%, Testing: 30%) will be developed. ROC area-under-the-curve 
(AUC) will be used to compare the efficacy of standard PRS, AI-powered PRS, and deep-learning-based 
models for predicting the hearing loss phenotype. 
Aim 2: To investigate the efficacy of standard and AI-powered PRS for tinnitus. We will use the UK 
Biobank database to conduct GWAS for tinnitus. The database includes the outcome variable of tinnitus 
(NTinnitus = 77605, categorical outcome). The methods described above (Aim 1) will be used to evaluate 
the efficacy of standard PRS, AI-powered PRS, and deep-learning based models for predicting the 
tinnitus phenotype.We will employ an explainable AI technique, SHapley Additive exPlanaions (SHAP), 
to study how predictor features in the AI models affect the outcome.  
 
Preliminary data: We conducted a standard GWAS for tinnitus and hearing loss using the UK Biobank 
database (Bhatt et al., 2022)9. We identified significant associations between tinnitus and genetic variants 
in proximity to GPM6A (chromosome 4), a gene associated with neuropsychiatric conditions. Nineteen 
independent loci reached suggestive significance. The study identified 27 loci associated with hearing loss 
(2 loci on chromosome 4). Our studies showed that chromosome 4 is involved in hearing loss and 
tinnitus. 
 

 
 



Timeline of updated goals: 
  Aim 1: Initial Chromosome Focus and Shift to SNP Filtering and Dimensionality Reduction 

• Aim 1.1: Start by analyzing chromosome 4 to identify key SNPs associated with hearing loss and 
tinnitus. 

• Aim 1.2: Shift analysis from chromosome 4 to chromosome 22 due to performance challenges 
and assess outcomes. 

• Aim 1.3: Expand the analysis to cover all chromosomes, recognizing the increased complexity 
due to the high dimensionality introduced by millions of SNPs. Apply genome-wide suggestive 
significance thresholds (based on -log p-values) to filter SNPs, aiming to mitigate the curse of 
dimensionality. 

• Aim 1.4: Evaluate the impact of SNP filtering on model performance, noting any incremental 
improvements. 

  Aim 2: Transition to Polygenic Risk Scores and Environment Variables 
• Aim 2.1: Test the effectiveness of using Polygenic Risk Scores (PRS) combined with 

environmental variables as model inputs. 
• Aim 2.2: Identify successful approaches where PRS + Environment variables demonstrate 

improved performance. 
• Aim 2.3: Test the performance of the model on a new “R21_database” of younger population  

  Aim 3: Incorporation of Phecodex Values 
• Aim 3.1: Evaluate whether adding Phecodex values to the PRS + Environment variables 

enhances predictive accuracy. 
• Aim 3.2: Analyze the performance improvements and identify the optimal model configuration 

for genetic and environmental factors. 
        
AI/ML Approach: 
Aim 1: Dimensionality Reduction and SNP Filtering 

• Models Used: Two primary models for SNP analysis: 
o Model 1: Transformer-based architecture, with token and position embeddings, batch 

normalization, and concatenation layers, totaling approximately 8.88 million parameters. 
o Model 2 (Best Model): Capsule-based model with Conv2D, PrimaryCaps, and Capsule 

QKV Attention layers, totaling approximately 7.06 million parameters. 
• Performance: Model 2 achieved the best performance, yielding an AUROC of 0.636 with a 

threshold of 6.5. 
 
Aim 2: Transition to Polygenic Risk Scores and Environment Variables 
 

For Hearing Loss 
• Models Used: PRS models combined with environmental data, tested on diverse machine 

learning algorithms. (Logistic Regression, Random Forest, Naïve Bayes, XB boost, and Multi-
layer Perceptron(ANN) 

• Outcome: The PRS + Environmental variables model showed improved predictive accuracy over 
SNP-based models. 

• Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an 
AUROC of 0.80 



                               

 
For Tinnitus 
• Models Used: PRS models combined with environmental data, tested on diverse machine 

learning algorithms. (Logistic Regression, Random Forest, Naïve Bayes, XB boost, and Multi-
layer Perceptron(ANN) 

• Outcome: The PRS + Environmental variables model showed improved predictive accuracy over 
SNP-based models. 

• Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an 
AUROC of 0.65 



 

 
 

For Hearing Difficulty in Noise 
• Models Used: PRS models combined with environmental data, tested on diverse machine 

learning algorithms. (Logistic Regression, Random Forest, Naïve Bayes, XB boost, and Multi-
layer Perceptron(ANN) 

• Outcome: The PRS + Environmental variables model showed improved predictive accuracy over 
SNP-based models. 

• Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an 
AUROC of 0.76 



 

 
 
Aim 3: Incorporation of PheCODE Values 

For Hearing Loss 
• Models Used: PRS + Environment variables further enhanced with PheCODE values are trained 

and tested on diverse machine learning algorithms. (Logistic Regression, Random Forest, Naïve 
Bayes, XB boost, and Multi-layer Perceptron(ANN) 

• Outcome: The addition of PheCODE data did not significantly increase predictive accuracy, 
resulting in only a 1% gain in AUROC compared to Aim 2. 

• Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an 
AUROC of 0.81 



 

 
For Tinnitus 
• Models Used: PRS + Environment variables further enhanced with PheCODE values are trained 

and tested on diverse machine learning algorithms. (Logistic Regression, Random Forest, Naïve 
Bayes, XB boost, and Multi-layer Perceptron(ANN) 

• Outcome: The addition of PheCODE data did not significantly increase predictive accuracy, 
resulting in only a 1% gain in AUROC compared to Aim 2. 

• Best Model Metrics: Multi-layer Perceptron(ANN) achieved the best performance, yielding an 
AUROC of 0.66 
 



 

 
For Hearing Difficulty in Noise 
• Models Used: PRS + Environment variables further enhanced with PheCODE values are trained 

and tested on diverse machine learning algorithms. (Logistic Regression, Random Forest, Naïve 
Bayes, XB boost, and Multi-layer Perceptron(ANN) 

• Outcome: The addition of PheCODE data did not increase the predictive accuracy.  
• Best Model Metrics: More or less all the models performed similarly. Hence, reporting Multi-

layer Perceptron(ANN) yielding an AUROC of 0.76 



 

 
 

DISCUSSION  
 
The present study evaluated the utility of PRS across the health spectrum for predicting hearing 
difficulty, SIN deficits, and tinnitus. ANN emerged as one of the most efficient models for 
predicting hearing traits while efficiently handling multidimensional genetic and non-genetic 
data. We observed a wide range of PRS contributing to the prediction of ANN, which suggests 
that genetic predisposition to the comorbidities can influence the susceptibility to acquiring 
hearing traits.  
 
Ideas/aims for future extramural projects: 
We plan to extend this work by (1) applying modern AI methods, such as graphical pre-trained 
transformers, (2) adding gene-level predictors to improve the accuracy and interpretability of the 



models, and (3) adding radiological measures that connect genes to behaviors, working as 
intermediate endophenotypes. We also plan to use XAI methods for stratifying genetic risk into 
biologically meaningful pathways and cell-types.    
 
 


