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Brief summary of accomplished results: 

 
 
 

Research report: 
Aims (provided by PI): 
 
The aim of this research is to develop a neural-network-based predictive model for flood forecasts. The specific 
aims include: 1) designing proper recurrent neural network architectures with the state-of-art techniques in the AI 
and ML community; 2) Comparing the developed models with the existing work in literature for flood forecast; 3) 
Studying the effects of partially selected input features on flood forecast for scalability reduction.  
 
The larger goal is that Flood control reservoirs are multimillion-dollar investments that typically benefit only a few 
locations downstream from the reservoir. So, we ask:  Can we extend the idea/success of a flood control system to 
smaller scales? Can we construct a greater number of small reservoirs instead of one big reservoir? How many 
reservoirs would be needed to achieve comparable flood risk reduction levels? Where should they be placed? 
 
However, planning of such small reservoirs needs an estimation water outflow at various cross-sections of the river 
network in the catchment. Currently, those outflows are being calculated with physics based mathematical 
models(mass transport and mass conservation equations) which are computationally intensive to compute at real-
time.  
 
Data: 
The Turkey river watershed of east Iowa region is consider for our research as a more realistic river network.  
Across this river network, we chose 5 unique links for USGS gauges to study the cross sectional streamflow at their 
outlet. The links are identified as 483619, 434365, 434478, 39971 and 434514. The network structure of these links 
is visible in the Figure 2 below. 
Currently, all the data for the models is simulated using software, ASYNCH. In total, we generated 5000 events.  
Event description: 

• Each event is 481 hours long in duration. 
• Precipitation at all the links in the river networks for every 1 hour is simulated. 

• Streamflow at all the links’ outlets in river network for every 1 hour is generated. 



Our deep learning models use the information of Precipitation and Streamflow at each link to predict the Streamflow 
for future 24 hours. 
In total our dataset has 2,405,000  datapoints corresponding to 5000 events. We experimented with various Train 
and Test splits. But finally got to 80% (4000 events) and 20% (1000 events) respectively. Moreover, the 80% of data 
used for training used split into 80-20 ratio with shuffling as a part of training and validation respectively for each 
epoch. 

 

 
Figure 1. Turkey river watershed. 
 

 



Figure 2. River network structure of preferred locations on Turkey river watershed. 
AI/ML Approach: 
In deep learning LSTMs(Long short-term memory) are an adapted versions of RNNs proposed by Hochreiter and 
Schmidhuber to address the problem of exploding/vanishing gradients that RNNs face. These networks are useful to 
preserve information and learn patterns in them over long periods of times using their unique network design. A 
basic LSTM unit is composed of a cell, gates (input, output, and forget gate) to control how the information flows in 
the different layers. Each LSTM cell constitutes, 

𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 +  𝑈𝑈𝑖𝑖ℎ𝑡𝑡 − 1 +  𝑏𝑏𝑖𝑖)  

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓 ℎ𝑡𝑡 − 1 + 𝑏𝑏𝑓𝑓) 

𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 +  𝑈𝑈𝑜𝑜ℎ𝑡𝑡 − 1 +  𝑏𝑏𝑜𝑜)  

𝐶𝐶𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡 − 1 + 𝑏𝑏𝑐𝑐) 

𝐶𝐶𝑡𝑡 =  𝑓𝑓𝑡𝑡 ⊗𝐶𝐶𝑡𝑡 − 1  + 𝑖𝑖 𝑡𝑡 − 1  ⊗𝐶𝐶𝑡𝑡�  

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡 − 1) 

where, 
• 𝑥𝑥𝑡𝑡 ∈ ℛd : input vector to the LSTM unit 
• 𝑓𝑓𝑡𝑡 ∈ ℛh : forget gate's activation vector 
• 𝑖𝑖𝑡𝑡 ∈ ℛh : input/update gate's activation vector 
• 𝑜𝑜𝑡𝑡 ∈ ℛh : output gate's activation vector 
• ℎ𝑡𝑡 ∈ ℛh : hidden/output state vector 
• 𝐶𝐶𝑡𝑡� ∈ ℛh : cell input activation vector 
• 𝐶𝐶𝑡𝑡 ∈ ℛh : cell state vector 
• 𝑊𝑊 ∈ ℛh x d , 𝑈𝑈 ∈ ℛh x h and 𝑏𝑏 ∈ ℛh : weight matrices and bias vector parameters which need to be learned 

during training 
where the superscripts d and h refer to the number of input features and number of hidden units, respectively. 𝜎𝜎 
corresponds to the sigmoid function and ⊗ is the Hadamard product. 
 
We also used GRU (gated recurrent units) which are similar to LSTM but with fewer parameters. Each cell 
constitutes, 
 

𝑧𝑧𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 +  𝑈𝑈𝑧𝑧ℎ𝑡𝑡 − 1 +  𝑏𝑏𝑧𝑧)  

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 𝑥𝑥 𝑡𝑡 + 𝑈𝑈𝑟𝑟 ℎ𝑡𝑡 − 1 + 𝑏𝑏𝑟𝑟) 

ℎ𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ(𝑟𝑟𝑡𝑡 ⊗ℎ𝑡𝑡 − 1) + 𝑏𝑏𝑐𝑐) 

ℎ𝑡𝑡 = (1 −  𝑧𝑧𝑡𝑡 )  ⊗ℎ𝑡𝑡 − 1  + 𝑧𝑧𝑡𝑡  ⊗𝐶𝐶𝑡𝑡�  

where, 
• 𝑥𝑥𝑡𝑡 ∈ ℛd : input vector to the LSTM unit 
• 𝑟𝑟𝑡𝑡 ∈ ℛh : reset gate vector 
• 𝑧𝑧𝑡𝑡 ∈ ℛh : update gate vector 
• ℎ𝑡𝑡 ∈ ℛh : hidden/output state vector 
• ℎ𝑡𝑡� ∈ ℛh : candidate activation vector 



• 𝑊𝑊 ∈ ℛh x d , 𝑈𝑈 ∈ ℛh x h and 𝑏𝑏 ∈ ℛh : weight matrices and bias vector parameters which need to be learned 
during training 

where the superscripts d and h refer to the number of input features and number of hidden units, respectively. 𝜎𝜎 
corresponds to the sigmoid function and ⊗ is the Hadamard product. 
 
Both the cells are shown below: 
Image source: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-
44e9eb85bf21 
https://i.stack.imgur.com/YzGyL.png 
 

 
 
 
 
 

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://i.stack.imgur.com/YzGyL.png


Though we used LSTM and GRUs as our basic cells, the we experimented with 2 kinds of architectures.  
1. Encoder -Decoder architecture  
2. Encoder-Decoder with Luoung Attention architectures 

 
Encoder decoder architectures are designed to address the sequence-to-sequence(seq2seq) prediction problems. In 
seq2seq, prediction involves forecasting the next values of a sequence for one or more of input sequences. This suits 
out flood prediction problem as we want to predict future outlet streamflow sequence, given precipitation and/or past 
streamflow sequences. 

• The encoder steps through the input time steps and encodes the entire sequence into a fixed length vector 
called a context vector. 

• The decoder steps through the output time steps while reading from the context vector to generate the 
output sequence. 

However, in the usual encoder decoder model, the decoder tries to learn the context from the last cell. Attention 
model differs here. It provides a richer context through attention mechanism where decoder learns where to pay 
attention on the context vector in a weighted manner. 
 
A sample illustration is shown below. 
 
 
Image reference: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3 
Encoder decoder LSTM  

 
 
 
Arrows in the bottom indicate the input sequences. Arrows in the top indicate output sequences. Each box is a 
LSTM/GRU cell. Circles represent cell states of context vector. Horizontal arrows indicate information flow. 
 
 
 
 
 
 
 
 
 
 
 
 

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3


Encoder decoder with attention  
 

 
 
The details on the exact architectures chosen for each model for experiments is described in the next section. 
 
Experimental methods, validation approach: 
Data Size: 
The first step in our experimentation is to get fixated on the train-test proportions of the dataset. In the real world, 
acquiring huge amounts of past data is not possible as the collection of flood data has only begun from past few 
decades. However, for deep learning we may require huge volume of data. Hence, we used a software called 
ASYNCH to generate simulated data. The description of dataset is discussed in the section “Data” above.  
 
This kind of data generation is a feasible approach for new watersheds too as the simulation is dependent on 
mathematical models. The idea is to train the model on simulated data and use transfer learning on real world data at 
a later stage. 
 
In total we have 2,405,000  datapoints corresponding to 5,000 events. We have experimented with various data sizes 
with an intension to work with smaller data sets closer to what we have in real world. Mostly to strike a balance 
between, real world small volume datasets and huge volumes of simulated data sets. 
 
We have set up our experiments to try with following data sizes: 
1/10th, 1/5th, 1/4th, 1/3rd, 1/2nd and full sizes of  2,405,000  datapoints with every dataset being 80-20 split for train-
test. 
 
The observations that we had were: 

• Smaller the data size, higher the training loss and worse the model predictions on validation dataset. 
• We have observed the same trend until we hit the full data set 



• This is due to the fact that training dataset doesn’t have enough rainfall patterns at lower data sizes and 
hence the performance on validation datasets was also poor. 

• We observed that, only at full dataset size there are enough variations that are representative of rainfall 
patterns.  

• The same observations are consistent with statistical patterns of hydrographs (Professor Ricardo can 
explain well) 

 
Therefore we decided to go ahead with full dataset for further investigation.  
 
Models of choice:  
 
In total, we developed 7 different models for the upper most link’s catchment but only went ahead with 5 models for 
each of downstream links. 
 
Model 1: (most upstream link 483619)  

 
Model 2: 

 



 
 
 
Model 3: Rainfall only 
 

 
 
 
Model 4: Rainfall and upstream 
 
 
 
 

 
 
 
 



 
 
 
Model 5: Attention model 

 
 
 
 
Similarly the model structure is same for rest of the links. Only the Runoff forecast hours for input and output 
change according to the width of the average hydrograph for that particular link. We chose the 47 hours for the first 
link as mentioned above by simply measuring the average base of the graph for 10 hydrographs for the link 483619 
which turned out to be 95 hours. We took the length up to the peak(Approximately half of the base – 47 hours) as 
out input and output future forecast length. 
The average base lengths for the links [483619, 434365, 434478, 39971, 434514] are [95,125, 190, 150, 210] 
respectively. Hence the future forecast lengths for the links are [47,62, 95, 75, 105] respectively. 
 
Initially, Model 3 and model 4 are built with LSTM encoder decoder networks instead of Attention-GRU networks. 
The old model-3 was  

 
 
 



 
 
 
 
 
And old model 4 was 

 
 
 
However, they were discarded due to much lower performance when compared to Attention GRU networks. 

 
Model Evaluation Methodology: 
 
We used Kling-Gupta Efficiency (KGE), a widely used metric for hydrological modelling, to evaluate the 
performance of the models. The equation for KGE is as follows: 
  

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 − �(𝑟𝑟 − 1)2 + (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2 
 
where r, 𝛽𝛽 = 𝜇𝜇𝑆𝑆

𝜇𝜇𝑂𝑂
 and  𝛾𝛾 = 𝜎𝜎𝑆𝑆

𝜎𝜎𝑂𝑂
 denote the linear correlation, mean ratio, and deviaton ratio of the two time series 

compared, respectively. KGE ranges between 1 and  − ∞ and higher values indicates better performance. For 
calculating a single KGE for a particular lead or lag time, we calculated the KGE values of the hydrographs 
resulting from different rainfall events, separately. Then, we calculated the mean and median KGEs with respect to 
the lead times. We present an example of the model outputs for 24-hour lag time in Figure 1.  
 



 
Figure 1. The top plot shows the hydrograph resulting from 10 events out of 1000 in the validation set at the outlet. 
(Colorful windows represent different events.) the bottom plot shows hydrograph of the two events along with the 
24-hour ahead predictions made by the five models. 

As the concentration time varies among different watersheds, we used a dimensionless time axis to be able to fairly 
test the prediction skills of the models across scales. We obtained the dimensionless time axis by dividing lead (i.e., 
lag) times  with a reference time that is based on the time of concentration. The reference time can be calculated as: 
 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝐿𝐿
𝑣𝑣
�
𝑛𝑛

 
where L is the longest channel length to the point of interest, v is the average flow velocity in the channel and n is 
the exponent. The parameter of L significantly changes from location to location. For the smallest sub catchment, 
for example, it is about 56 km while the distance between the most remote point in the watershed and the outlet is 
about 200 km.  We used a constant velocity, 0.75 m/s. We tuned the exponent, n, relying on the notion of river flow 
persistence and set it as 0.4. 
 
Results: 
 
We present mean and median KGE values for each model as well as persistence in Figure 1.  The figure indicate that 
predictability of streamflow decreases as the fraction of lead time over reference time increases. Simple or local 
persistence outperform all the five models to a certain point, as expected. However, the models consistently provide 
KGE values greater than 0.6 even for greater lag times. Specifically, Model-1 and Model-2 showed similar 
performance with a slight difference. The performance of Model-1 and Model-2 dominate simple persistence 
significantly for dimensionless time values greater than 1 and 2, respectively. We also observe the effect of 
removing some input features from Model-2 in the figure. Model-5, for example, has the least information as input 
(i.e., rainfall) and it underperform all the models for a wide range of fractions of lead time over reference time. 
Interestingly, Model-5 shows a better performance than Model-3 and Model-4 when the fraction of lead time over 
reference time is greater than 9. Model-3 and Model-4, on the other hand, show similar performance. 
 



 
Figure 2. Mean and median KGE values for all five locations corresponding to different models. 

We further tested the performance of the models assuming that the future rainfall is zero. As 
shown in Figure 3,  KGE values for all the models decay rapidly and eventually fall under the persistence 
curve when the fraction of lead time over reference time is about 12. However, all the models outperform 
simple persistence for some dimensionless time values. Model-1 and Model-2 show a better performance 
than simple persistence when the fraction of lead time over reference time is between 1-12 and 2-12, 
respectively.   



 
Figure 3. Median KGE values for all five locations corresponding to different models when the future rainfall is 

assumed zero. 

Instead of assuming future rainfall is zero, we removed future rainfall feature from the model inputs and investigated 
the changes in model performances. Figure 4 illustrates the results for this experiment. The figure shows that the 
performance of the models does not degrade as rapid as in the previous experiment. The curves for the models get 
over the curve for the local persistence at a certain dimensionless time values and the decay in the curves is 
somehow parallel to the simple persistence. This is, indeed, the case when we analyze the median KGE values. We 
conclude that some of the hydrographs are not well predicted by the models regardless of the fraction of lead time 
over reference time when we interpret the mean KGE values. 



 
Figure 4. Median KGE values for all five locations corresponding to different models when the future rainfall 

component is removed from the models’ input features and the models are retrained. 

 
For location 483619: (3 events vs 10 events) 
This contains both error plots and actual predictions. We present the first lag and last lag in this report. But we have 
results for each lag separated by 5 hours. 
 



 

 



 
 
 

 
 

 



 
 

 
 



 
 
 

 
 
Similarly For location 434365: (3 events vs 10 events) 



 

 
 



 

 



 
 
 

 



 
 
Similarly For location 434478: (3 events vs 10 events) 
 

 



 
 

 



 
 

 



 

 



 
 
Similarly For location 39971: (3 events vs 10 events) 
 

 



 
 

 



 

 



 

 
 



 
 
Similarly For location 434514: (3 events vs 10 events) 

 



 

 



 
 

 



 

 



 
 
 
Few observations from above plots are that: 

• Model 2 and Model 5 perform consistently better than the other models  
• The errors sometimes corresponds to a shift of the prediction hydrograh by few hours right or left to the 

original hydrograph. However, Peak of the predicted hydrographs and original ones are very similar 
• As we go downstream, Rainfall only model starts to decrease in performance. This may be due to the fact 

that we are taking an average rainfall of all the catchments that directly contribute to flow at that particular 
link. 

 
(Note: we also want to investigate with new models that does not take future values as an input) 
 
 
Ideas/aims for future extramural project: 

In a future extramural project, the ultimate goal is to 
design an active reservoir system for flood mitigation 
and control. The iterative design process consists of 
three major components: reservoir network design, 
flood forecast prediction, and reinforcement learning 
(RL) control.  The machine-learning-based flood 
forecast model will be utilized to approximate the 
interaction between the control agent and the 
environment (i.e., the river network).  
The results from this IIAI pilot project can be extended 
in developing the above-mentioned modeling module. 
The following specific aims shall be addressed: 1) 

incorporating the reservoir gate operations as additional input features in the machine-learning-
based predictive model; 2) predicting the state (i.e., the configuration) of the river network in 
addition to the peak flow only; 3) developing a generalized machine learning model for various 
river networks.  
  


